
CGS 3763: OS Concepts (Memory Management) Page 1 © Mark Llewellyn

CGS 3763: Operating System Concepts
Spring 2006

Memory Management – Part 7

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cgs3763/spr2006

CGS 3763: OS Concepts (Memory Management) Page 2 © Mark Llewellyn

Thrashing
• If a process does not have “enough” pages, the page-

fault rate is very high.
• This leads to:

– low CPU utilization
– operating system thinks that it needs to increase the degree

of multiprogramming
– another process added to the system

• Thrashing ≡ a process is busy swapping pages in and
out without accomplishing any real activity. The
process will spend most of the time in the queue for
the paging device.

CGS 3763: OS Concepts (Memory Management) Page 3 © Mark Llewellyn

Thrashing (cont.)

CGS 3763: OS Concepts (Memory Management) Page 4 © Mark Llewellyn

Demand Paging and Thrashing

• Why does demand paging work?
Locality model
– A locality is a set of pages that are actively used together.
– A program is generally composed of several different

localities.
– A process migrates from one locality to another during

execution.
– Localities may overlap.

• Why does thrashing occur?
Σ size of locality > total frame allocation for the process

CGS 3763: OS Concepts (Memory Management) Page 5 © Mark Llewellyn

Locality In A
Memory-Reference

Pattern

CGS 3763: OS Concepts (Memory Management) Page 6 © Mark Llewellyn

Working-Set Model
• Δ ≡ working-set window ≡ a fixed number of page references

Example: 10,000 instructions.

• WSSi (working set size of process Pi) =
total number of pages referenced in the most recent Δ
(time variant)

– if Δ too small will not encompass entire locality

– if Δ too large will encompass several localities

– if Δ = ∞⇒ will encompass entire program

• D = Σ WSSi ≡ total demand frames

• if D > m ⇒ Thrashing

• Policy if D > m, then suspend one of the processes

CGS 3763: OS Concepts (Memory Management) Page 7 © Mark Llewellyn

Working-set model Example

Assume Δ = 10

CGS 3763: OS Concepts (Memory Management) Page 8 © Mark Llewellyn

Working Set Model – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1
• Δ = 3

reference string

1

2

3

W
S

7

7

7

70

7

70

1

2

70

1

2

70

1

2

70

3

0

73

0

74

3

2

74

0

2

74

3

2

70

3

0

73

2

70

3

2

73

1

2

70

1

2

70

1

2

70

1

1

70

7

1

70

7

1

70

7

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 10

13 page faults
1 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 WSS

CGS 3763: OS Concepts (Memory Management) Page 9 © Mark Llewellyn

Working-Set Model (cont.)

• Once Δ has been selected, using the working set model is simple.

• The OS monitors the working set of each process and allocates to
that working set enough page frames to provide it with its
working set size.

• If there are enough extra frames, another process can be initiated.

• If the sum of the working set sizes increases, exceeding the total
number of available frames, the OS will select a process to
suspend. The suspended process’s pages are swapped out, and
its frames are reallocated to other processes. The suspended
process will be restarted later.

• The working set strategy prevents thrashing while keeping the
degree of multiprogramming as high as possible, thus optimizing
CPU utilization.

CGS 3763: OS Concepts (Memory Management) Page 10 © Mark Llewellyn

Keeping Track of the Working Set
• Approximate with interval timer + a reference bit

• Example: Δ = 10,000
– Timer interrupts after every 5000 time units
– Keep in memory 2 bits for each page
– Whenever a timer interrupts copy and sets the values of all

reference bits to 0
– If one of the bits in memory = 1 ⇒ page in working set

• Why is this not completely accurate? Because you can’t tell
where, within an interval of 5000, a reference occurred.

• Improvement = 10 bits and interrupt every 1000 time units. The
disadvantage to this approach is higher cost to service more
frequent interrupts.

CGS 3763: OS Concepts (Memory Management) Page 11 © Mark Llewellyn

Page-Fault Frequency Scheme
• While the working set model is successful, and knowledge of

the working set can be useful for prepaging (more later), it is a
clumsy mechanism for controlling thrashing.

• A strategy that uses the page-fault frequency (PFF) is a more
direct approach for controlling thrashing.

• Since thrashing exhibits a very high page fault rate, we need to
control the page fault rate.
– Too high a page fault rate implies that a process needs more page

frames.

– Too low a page fault rate implies that a process may have more
page frames than it needs.

• Establish upper and lower bounds on the page fault rate.

CGS 3763: OS Concepts (Memory Management) Page 12 © Mark Llewellyn

Page-Fault Frequency Scheme
• Establish an “acceptable” page-fault rate

– If the actual page fault rate is too low, process loses frames.
– If the actual page fault rate is too high, process gains frames

CGS 3763: OS Concepts (Memory Management) Page 13 © Mark Llewellyn

Working Sets and Page Fault Rates
• There is a direct relationship between the working set of a

process and its page fault rate.

• As shown in the example on page 7, typically the working set
of a process changes over time as references to code and data
sections move from one locality to another.

• Assuming that the process is not thrashing (i.e., it has a
sufficient frame allocation), the page fault rate of the process
will transition between peaks and valleys over time.

• This general behavior is illustrated on the next page.

CGS 3763: OS Concepts (Memory Management) Page 14 © Mark Llewellyn

Working Sets and Page Fault Rates (cont.)
P

ag
e

fa
ul

t r
at

e

time

working set

CGS 3763: OS Concepts (Memory Management) Page 15 © Mark Llewellyn

Working Sets and Page Fault Rates (cont.)

• A peak in the page fault rate occurs when demand paging
begins in a new locality.

• Once, the working set of the new locality is in memory, the
page fault rate falls.

• When the process moves to a new working set, the page fault
rate rises towards a peak once again, returning to a lower rate
once the new working set is in memory.

• The span of time between the start of one peak and the start of
the next peak illustrates the transition from one locality to
another (one working set to another).

CGS 3763: OS Concepts (Memory Management) Page 16 © Mark Llewellyn

Memory-Mapped Files
• Memory-mapped file I/O allows file I/O to be treated as

routine memory access by mapping a disk block to a page in
memory.

• A file is initially read using demand paging. A page-sized
portion of the file is read from the file system into a physical
page. Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

• Simplifies file access by treating file I/O through memory
rather than read() write() system calls.

• Also allows several processes to map the same file allowing
the pages in memory to be shared.

CGS 3763: OS Concepts (Memory Management) Page 17 © Mark Llewellyn

Memory Mapped Files

CGS 3763: OS Concepts (Memory Management) Page 18 © Mark Llewellyn

Allocating Kernel Memory
• When a process running in user mode requests additional

memory, pages are allocated from the list of free page frames
maintained by the kernet.

• Most likely, the free pages are scattered throughout the physical
memory (they are not contiguous pages).

• Kernel memory is treated differently from user memory.
• Often allocated from a free-memory pool different from that

used to satisfy normal user-mode requests. There are two
primary reasons for doing this:

1. Kernel requests memory for structures of varying sizes (often less than
one page in size).

2. Some kernel memory needs to be contiguous as some hardware devices
interact directly with physical memory – without the benefit of a virtual
memory.

CGS 3763: OS Concepts (Memory Management) Page 19 © Mark Llewellyn

Buddy System

• The “buddy system” allocates memory for the kernel from a
fixed-size segment consisting of physically-contiguous pages.

• Memory allocated from this segment using power-of-2 allocator
– Satisfies requests in units sized as power of 2

– Request rounded up to next highest power of 2

– When smaller allocation needed than is available, current chunk split into
two buddies of next-lower power of 2

• Continue until appropriate sized chunk available

• The example on the next page illustrates a kernel request for 21
KB of memory from an original segment of 256 KB.

CGS 3763: OS Concepts (Memory Management) Page 20 © Mark Llewellyn

Buddy System Allocator

Since the next
power of 2
division would
be a 16 KB split
which is too
small to satisfy
the require, the
21 KB request is
allocated from
one of these two
buddies.

CGS 3763: OS Concepts (Memory Management) Page 21 © Mark Llewellyn

Buddy System (cont.)

• The advantage of the buddy system is how quickly adjacent buddies can
be combined to form larger segments using a technique known as
coalescing.

• In the previous example, when the kernel releases the CL unit it was
allocated (let’s assume that CL was the segment allocated to the kernel),
the system will coalesce CL and CR into a 64 KB segment BL.
Assuming no further allocations occurred, the BL and BR would be
coalesced into form a 128 KB segment. Eventually, the original 256
KB segment would be reconstructed.

• The obvious drawback to the buddy systems it that rounding up to the
next higher power of 2 is very likely to cause internal fragmentation
within the allocated segments. For example, a 33 KB request can only
be satisfied with a 64 KB segments. In fact, there is no guarantee that
less than 50% of the allocated segment will be wasted due to internal
fragmentation.

CGS 3763: OS Concepts (Memory Management) Page 22 © Mark Llewellyn

Slab Allocator
• An alternative to the buddy system which solves the internal

fragmentation problem.
• A slab is one or more physically contiguous pages.
• A cache consists of one or more slabs.
• Single cache for each unique kernel data structure

– Each cache filled with objects – instantiations of the data structure

• When cache created, filled with objects marked as free
• When structures stored, objects marked as used
• If slab is full of used objects, next object allocated from empty

slab
– If no empty slabs, new slab allocated

• Benefits include no fragmentation and fast memory request
satisfaction.

CGS 3763: OS Concepts (Memory Management) Page 23 © Mark Llewellyn

Slab Allocation

CGS 3763: OS Concepts (Memory Management) Page 24 © Mark Llewellyn

Other Issues -- Prepaging
• Prepaging

– To reduce the large number of page faults that occurs at
process startup

– Prepage all or some of the pages a process will need, before
they are referenced

– But if prepaged pages are unused, I/O and memory was
wasted

– Assume s pages are prepaged and α of the pages is used
• Is cost of s * α save pages faults > or < than the cost of

prepaging
s * (1- α) unnecessary pages?

• α near zero ⇒ prepaging loses

CGS 3763: OS Concepts (Memory Management) Page 25 © Mark Llewellyn

Other Issues – Page Size

• Page size selection must take into
consideration:

– fragmentation

– table size

– I/O overhead

– locality

CGS 3763: OS Concepts (Memory Management) Page 26 © Mark Llewellyn

Other Issues – TLB Reach
• TLB Reach - The amount of memory accessible from the TLB

• TLB Reach = (TLB Size) X (Page Size)

• Ideally, the working set of each process is stored in the TLB

– Otherwise there is a high degree of page faults

• Increase the Page Size

– This may lead to an increase in fragmentation as not all
applications require a large page size

• Provide Multiple Page Sizes

– This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation.

CGS 3763: OS Concepts (Memory Management) Page 27 © Mark Llewellyn

Other Issues – Program Structure
• Program structure

– Int[128,128] data;

– Each row is stored in one page
– Program 1

128 x 128 = 16,384 page faults

– Program 2

128 page faults

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

for (i = 0; i <128; i++)
for (j = 0; j < 128; j++)

data[i,j] = 0;

CGS 3763: OS Concepts (Memory Management) Page 28 © Mark Llewellyn

Other Issues – I/O interlock
• I/O Interlock – Pages must sometimes be

locked into memory

• Consider I/O - Pages that are used for copying
a file from a device must be locked from being
selected for eviction by a page replacement
algorithm

CGS 3763: OS Concepts (Memory Management) Page 29 © Mark Llewellyn

Reason Why Frames Used For I/O Must Be In
Memory

